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Abstract. Recent neutron diffraction data showing unusual temperature and magnetic-field- 
induced magnetic reordering in the helical spin-density wave phase of cubic FeGe is analysed 
in terms of a Landau-type free energy previously used to study related phenomena in 
isostructural MnSi. The predicted magnetic phase diagrams (H-T) exhibit novel types of 
first-order and second-order wavevector and spin reorientation phase transitions. 

MnSi and the cubic polymorph of FeGe are intermetallic compounds which exhibit the 
relatively rare phenomenon of a helical spin-density wave stabilised by the Dzya- 
loshinskii-Moriya interaction [ 1-31. These materials have the tetrahedral P213 crystal 
structure where the lack of a centre of inversion symmetry is responsible for this type of 
antisymmetric exchange coupling. In MnSi, the Nee1 temperature is approximately 29 K 
with the spin density modulation characterised by a wavevector Q in a (111) direction 
and a long periodicity Q = 0.035 A-' (A = 180 A) [4]. There has been much experimental 
[4-6] and theoretical [3,7-91 study of the magnetic ordering process of this compound 
under the influence of an applied magnetic field. For the case H 1 1  ( l l l ) ,  the field induces 
a uniform moment m 11 H while reducing the amplitude of the spin polarisation vector S 
( I Q ) ,  creating a conical spin structure. At sufficiently high field values H,, S is reduced 
to zero and a field-induced ferromagnetic (paramagnetic) phase is achieved. If the field 
is applied in other directions, Q first rotates towards the field direction (maintaining 
S I Q). For H 11 (100) or H 11 (110), there is an associated second-order wavevector and 
spin reorientation phase transition predicted to occur at the critical fieldH,,, where Q I (  H 
(i.e. S 1 H) for H > Hsr.  

In contrast with naive expectation, recent neutron diffraction data [lo] suggests that 
the magnetic ordering process of cubic FeGe is considerably more complicated than in 
the prototype compound MnSi. At temperatures not too far below TN -- 280 K, the spin- 
density wave is described by a wavevector Q along a (100) direction with a very long 
periodicity Q = 0.009 A-' (A = 700 A). As the temperature is lowered, a 'sluggish' 
transition occurs at T2 to a phase characterised by Q along a (111) axis, with little change 
in the wavelength. Large hysteresis is observed at this wavevector reorientation with 
T2 1 = 211 K and T2 = 245 K. The spin polarisation vector appears to remain in the 
configuration S I Q  at all T <  TN. The effect of a magentic field applied along a (110) 
direction at 250 and 140 K was observed to cause Q to rotate towards H (again with 
S I Q). At 250 K, Q remains along (100) for H =s 0.08 kOe and then rotates towards H 
with increasing field strength, where Q 1 1  H for H b 0.18 kOe. At 140 K, Q slowly turns 
from a (111) axis towards H with increasing field, with Q 11 H for H 3 0.40 kOe. Quali- 
tatively different behaviour for the field dependence of Q between these two tem- 
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peratures is thus seen, Neutron diffraction data on the magnetic ordering process with 
H along other directions have not been reported. 

In this work, a Landau-type free energy previously used to model the wavevector 
and spin reorientation in MnSi is analysed in a effort to understand further the data in 
[lo] for FeGe. By simply changing the sign of a certain coefficient in the free energy 
(relative to its sign used for MnSi), which is related to magnetic dipole-dipole inter- 
actions, qualitative agreement with the results outlined above is obtained. A first-order 
wavevector and spin-flop transition is predicted to occur at T2 from the high-T phase 
with Q I /  (100) to the low-T phase with Q I/ (111). For H I /  (110), the wavevector and spin 
reorientation phase transition H,, is predicted to be second order for T < T2 and first- 
order for T > T2. Numeric and analytic result sfor the predicted magnetic phase diagrams 
withH along (100) and (111) are also presented. 

The free energy used in [7] (hereafter referred to as I) to study the wavevector and 
spin reorientation in MnSi is written in terms of variables describing the long-range 
magnetic order (spin density averaged over a unit cell) given by 

(1) 

-s2-1 - zS 2 . Using these relations, the free energy, expanded to fourth order ins  and 

s(r) = m + s eiQ*r + S* e-'Q*r, 

Here, S is the (complex) spin polarisation vector written as S = SI + is2 where SI and S2 
are real vectors. The helical spin configuration is described by taking SI I S 2  I Q with 
s2 - 
constructed so as to be invariant with respect to the symmetry operations of the space 
group, can be simplified to the following form (see equation (2.4) of I): 

F = iAom2 + AQS2 + Bm2S2 + BS4 + +Bm4 + B'm:S2 
+ ( lDQ2S2 + +ES4)g - mllH cos 8 - m ,  H sin 8 (2) 

g = 1 + p ; ' + p ' : + p i  (3) 
where PI,  pz and b3 are the direction cosines of Q relative to the crystallographic axes; 
8 is the angle between Q and H; mll and m ,  are the components of m parallel and 
perpendicular to Q, respectively. Temperature dependence is assumed to enter in the 
usual way by writing 

A0 = u ( T -  TO) A ,  = u ( T -  TQ) (4) 
where To S TQ since Q is small. In the present work it is assumed that B' = B ,  which 
can be shown to be good approximation for systems with small Q [ll]. As discussed in I, 
the anisotropy coefficients D and E are expected to be much smaller than corresponding 
coefficients of isotropic terms, e.g. E @ B and DQ2 6 A ,  where A = A o  - A, = 
a( TQ - To). The Dzyaloshinskii-Moriya term of the form F, = 2CQ - (SI x S,) is hidden 
in the coefficient AQ and details of how this interaction stabilises long-wavelength helical 
spin structures can be found in I. Note that renormalisation group arguments [2] suggest 
that the transition at TN in these types of system is driven to be weakly first order by 
critical fluctuations. Within the present mean-field analysis, this transition is predicted 
to be second order. 

In the absence of an applied magnetic field, the direction of Q is determined by the 
anisotropy energy F A  = E d ,  where 

E A  = dS2 + aES4 ( 5 )  
with d = 1DQ2 and S2 - TN - T. For E A  > 0, Q is stabilised along a (111) axis whereas, 
for E A  < 0, Q lies along a (100) direction. The experimental results for MnSi are 
accounted for by assuming that E A  > 0, and further that d > 0, and E > 0. A model to 
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describe the data for FeGe can be made by assuming that d < 0 and E > 0. In this way 
it isseen that EA < 0 at temperaturesclose to TNwhereS2issmall. At lowertemperatures, 
EA can change sign if the E-term in ( 5 )  becomes dominant. This model provides a 
mechanism for a first-order phase transition at some temperature T2 from a high-Tstate 
with Q I( (100) to a low-Tstate with Q 11 (111) (also see [3] and [12]). 

With a magnetic field present, there can be competition between the anisotropy EA 
and the terms B‘m:S2 - m * H .  The latter terms are minimised by a configuration with 
m ,  = 0 (since B’ = B > 0 )  and 8 = 0, i.e. Q I/ H .  

Expressions for the two zero-field transition temperatures can be obtained from (2) 
in the following way. The NCel temperature is determined by setting the coefficient of 
S2 equal to zero. With Q 1 1  (loo), this gives 

TN = TQ - 2d/a. (6) 
The first-order wavevector and spin-flop transition temperature T2 can be obtained by 
equating the free energies corresponding to Q 11 (100) and Q 11 ( l l l ) ,  with S2 satisfying the 
relation dF/&S2 = 0 in each case. Using the approximation E =e B ,  this procedure yields 

T2 L- TN + 8d/a(E/B). (7) 
This approximate result also corresponds to the temperature at which EA = 0. Note 
that, since both d and E/B  are small quantities, their ratio need not be small so that T2 
can be well below TN. 

Crude estimates for some of the parameter values, for the purpose of numerical 
work, can be obtained in the following way. For a magnetic field applied along one of 
the three principal crystallographic axes (loo), (110) or ( l l l ) ,  the configuration Q I (  H i s  
achieved at sufficiently high field values and at temperatures not too close to TN (see 
I and below). It is then straightforward to determine the critical field H ,  above which 
s = 0: 

H ,  = m,(A  - dg)  
mz = ( -AN + 2d - dg)/B 

(8) 
(9) 

whereAN = a( T - TN) with g = 2, # and4forH along (loo), (110) and (1 11), respectively. 
Since d < 0, these results can be used to predict that, at low temperatures (where IAN 1 < 
l d l ) ,  Hi1” > HL1lo) > Hill1), in agreement with values for H ,  which can be extracted 
from the magnetisation data at 77 K in [13]. Estimates for some of the parameter values 
can then be obtained by comparing the relations (8) and (9) with these data: d = -0.27, 
A = 5.3 and B/a = 1.7 x (in cgs units with m given in gauss). These values are not 
expected to be very reliable since truncation of the free energy at fourth order becomes 
a poor approximation at low temperatures. In addition, some fourth-order anisotropy 
terms which would be relevant for a complete quantitative analysis have been omitted 
from the free energy (2) (see I). For convenience we set a = 1, which is probably 
reasonable since a = A/( TQ - To) and To 6 TQ 6 TN = 280 K. Taking T2 = 228 K as the 
mean of T2 .1 and T2 , the relation (7) can then be used for the estimate E = 6.8 X lo-’. 
These estimates for the parameters are consistent with previously made remarks con- 
cerning their relative values. 

For the calculated results presented below, H and Q are assumed to lie in the (170) 
plane, with S I Q. Walker [14] has recently shown in the case of MnSi that Q need not 
be confined to the (1TO) plane because of the small spin-orbit coupling terms D1 and D 2  
in the free energy (2.2) of I. As a consequence, there can be two successive phase 
transitions associated with the wavevector reorientation. The neutron diffraction data 
suggest that these effects are too small to be observed in the case of FeGe [lo] and are 
omitted from the present calculation. 
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Figure 1. Numerically determined phase diagram 
with H 1 1  [OOl] showing the paramagnetic phase 
( l ) ,  conical phase (2) with 19 = 0, Q / /  [Ool] and 
ordered state (3') with 0 < I9 < 0". The broken 
curves represent second-order transitions H,, (3'- 
2) and H, (2-1). 
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Figure 3. Phase diagram for H 1 1  [ 1101 showing the 
paramagnetic phase (l) ,  conical phase (4) with 
0 = 0, Q/I [110] and ordered states (3') with 
0 < 0 < BO and (2) with 0 = n/2. The broken 
curves represent the second-order transitions H, 
(1-4) and H,, (3 ' 4 )  and the full curve denotes the 
first-order transition Hsr. 

1 

H(k0e) 
Figure4. Field dependence of the angle between 
Q and H for (a )  HI1 [OOl] at T =  150K, ( b )  
HlI[111] at T=250K and ( c )  Hll[110] at T =  
250 K. 

Results of numerical minimisation of the free energy F ( S ,  mil, m,, 8) (equation (2)) 
for the magnetic phase diagrams corresponding to H along each of the three principal 
crystallographic axes are shown in figures 1-3. The analytically predicted first-order 
wavevector and spin-flop transition at T2 in zero field (full circle at 228 K) from a state 
with QII [OOl] (phase 2: T2 < T <  T N )  to a state with QII [ l l l ]  (phase 3: T <  T2)  is 
confirmed. The paramagnetic state ( T  > T N )  is labelled as phase 1 in each figure, with 
second-order transitions represented by broken curves and first-order transitions by full 
curves. Fo rH 11 [OOl] (figure 1) and T < T2, Q rotates from the [ill] axis towardsH with 
increasing field strength (phase 3'), where the 2-3' phase boundary represents the 
second-order reorientation phase transition H,,, above which Q 11 [OOl] (0 = 0). An 
example of the field dependence of 8 at 150 K is shown in figure 4(a). Phase 2 labels the 
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Figure 5. Phase diagram for H in the (170) plane 
at T = 150 K (see figures 1-3). The paramagnetic 
state (phase 1) is to the right of the (thin) broken 
curve. Lines of second-order transitions at which 
0 = 0 (Q 1 1  H )  are indicated by the (heavy) broken 
lines along the three high-symmetry axes. 0 > 0 
in all other regions of the diagram, including the 
(001) axis for H < 0.39 kOe and the (110) axis for 
H < 0.31 kOe. 
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Figure 6. Phase diagram as in figure 5 for T =  
250 K. The heavy full curve denotes a line of first- 
order transitions between two states with 8 > 0. 
The dotted portion of the (110) axis 
( H  < 0.09 kOe) indicates 8 = n/2 (Q 1 1  (001)). 

conical spin structure, with S+ 0 at the 2-1 phase boundary H,. For H 11 [ l l l ]  (figure 2 )  
and T > T2, Q rotates from the [OOl] axis towards H at small field strengths (phase 2' )  
but then undergoes a first-order flop transition at A,, to a state with Q 11 [ l l l ]  (phase 3 ) .  
An example of the field dependence of 8 at 250 K is given in figure 4 ( b ) .  For H 11 [110] 
(figure 3 )  and T < T,, Q rotates from the [ 1111 axis towards H (phase 3' )  with a second- 
order transition at H,, to a state with Q 1 1  [110] (phase 4). At temperatures T2 < T < T N ,  
Q remains along the [OOl] axis with increasing field strength (phase 2 )  until a critical 
value H,, where a first-order flop transition occurs to phase 4; the field dependence of 8 
at 250 K is shown in figure 4(c ) .  Note that T = T,, H = 0 for figures 1 and 3 represents 
a point where a line of second-order transitions terminates at a first-order transition. 

With the magnetic field applied in a direction other than one of the three high- 
symmetry axes, a configuration with Q 11 His  never achieved. This is illustrated in figures 
5 and 6 which show portions of the phase diagram for H in the (1TO) plane at T = 150 K 
and 250 K, respectively. 

Some approximate analytic expressions for the critical fields H,, and A,, can be 
derived following the analysis of section 3 in I. The results given below are valid over 
a wider range of temperature and anisotropy strengths than are the corresponding 
expressions reported in I. The extended results form, valid to first order in H ,  are 

with 

where r = d + dESi and Si = - A Q / 2 B  = - A N / 2 B .  Using these results together with 
the equilibrium expression for S2,  the free energy F ( 8 ,  H )  valid to order @ can be 
written as (also see (3 .7 )  of I) 

where EA = dSi + $ES& The principal difference between the above results and those 

mll = ~ ~ ~ H c o s  8 m ,  = x L H s i n 8  (10) 

XI1 (A - rg1-l xl = (A - A ,  - 2rg)-' (11) 

F = Fo + E A g  - dxllH2 + h(xll - x J H 2  sin2 8 (12)  
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of I is that here ~ 1 1  and xI are dependent on the direction of Q, i.e. 8 dependent, through 
the function g. Results are given below taking Q andH to lie in the (1TO) plane with 8 as 
defined in figures 1-3. After expanding the free energy to low order in sin 8, second- 
order transitions are determined by setting the coefficient of sin2 8 equal to zero, and 
first-order transitions by directly comparing the free energies of the two relevant phases. 

For H 1 1  [OOl], the second-order reorientation transition corresponding with the 3'- 
2 phase boundary of figure 1 can be expressed as 

H:r == 4EA/[x1(1 + 2rxi) - xY1 

H:r 2E, / [~ i (1  + r ~ l )  - x Y I .  (14) 

(13) 
where xi and x; are determined from (11) by setting g = 2 (8  = 0). For H 1 1  [110], the 
3 ' 4  phase boundary of figure 3 has a similar form (note factors of 2) 

where, here, xi and x: are given by (11) with g = $. These results (13) and (14) are to 
be compared with (3.9) and (3.13), respectively, of I. An expression for the first-order 
2-4 phase boundary of figure 3 for H 11 [ 1101 is 

fi:, -- -E,/(Xh4) - x y  (15) 
where, from (ll), xi") = xli(g = 4) and xy) = xi(g = 2). The multicritical point at 
the paramagnetic phase boundary where H,, and H ,  meet (see figure 3) is determined 
from (15) to occur at the critical field 

Hif,:c 2: -dA2/2B. (16) 
The case of H ( 1  [111] is somewhat special. An expansion of the free energy in powers of 
sin 8 reveals that there are odd-order terms, e.g. sin3 8, which arise from the function g. 
Phase transitions involving 8 are thus necessarily of first order, as confirmed numerically. 
The 2'-3 phase boundary of figure 2 can be expressed as 

fi:f 21 - E E A / [ x ~ ( ~  - 4~x1) - %?I 

H&c -32dA2/21B. (18) 

(17) 
where xi and xy are given by (11) with g = 4. In this case, the multicritical point at the 
paramagnetic phase boundary occurs at the critical field 

Note that the critical fields H,, and fi,, given above are zero at the temperature T2 where 
E A  = 0, as required. Inserting the estimated parameter valuesinto the above expressions 
(13)-(18) show that there is good agreement with the results of direct numerical mini- 
misation of the free energy (and that the approximate expressions (3.9) and (3.13) of I 
are not very accurate in this case). 

It is of interest to note that weak scattering at the harmonic wavevector 2Q observed 
at 250 K with H 1 1  (110) and low field values (see figure 9 of [ 101) is consistent with earlier 
predictions of a second harmonic [SI, with an associated spin polarisation vector 

S2Q = - ( ~ B / A , Q ) S ( ~  S ) .  (19) 
Note that S,,  = 0 at H = 0 and also if Q I/ H (since, then, m l. S ) ;  however, S,, is non- 
zero in the regions of phase 2 (as observed) and phase 3' of figure 3, as well as phase 3' 
of figure 1 and phase 2' of figure 2. The disappearance of S2Q at 8 = 0 is another signature 
of the second-order spin reorientation phase transitions. 

Spin reorientation phase transitions are of the order-order (displacive) type, which 
contrast with the more familiar order-disorder kind (exemplified here by the para- 
magnetic phase boundary in figures 1-3,5 and 6). Spin rotation has been much studied 
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in the rare-earth orthoferrites [ 15-17] , which often involves a temperature-induced 
reorientation of the magnetisation vector from one crystallographic axis to another and 
is associated with two second-order phase transitions. In the case of field-induced spin 
rotation, second-order phase transitions are found to occur only for H applied along a 
high-symmetry axis, a feature also found in the present study. 

Second-order phase transitions of this kind are in some ways weaker than those of 
the order-disorder type. Specific heat anomalies are small and the associated universality 
classes cannot be characterised simply by the space and spin dimensionality. Small 
anisotropy effects [ 181 or changes in crystal symmetry (through magnetoelastic coupling 
[8, 16, 191) are usually involved. The effects of critical fluctuations (not accounted for in 
the present mean-field treatment) at the reorientation phase transitions are expected to 
be negligible owing to a linear coupling between the order parameter and shear strains 
[8, 121, giving rise to a critical dimensionality of 2.5 [16, 171. 

It is then not surprising, for example, that, although the multicritical points of figure 
2 where phases 1 , 2’ and 3 meet, and of figure 3 where phases 1 , 2  and 4 meet, have the 
apparent structure of the common bicritical point, they are not of that type. A bicritical 
point involves an order-disorder spin-flop transition between states of spin dimen- 
sionality n and n - 1 [20], causing a significant distortion of the paramagnetic phase 
boundary (not present here), even within a Landau-type mean-field treatment [21]. The 
multicritical points of figures 2 and 3 do not involve a change in spin dimensionality but 
instead a somewhat less dramatic reorientation in the spin structure with respect to the 
crystallographic axes. 

In conclusion, this work has demonstrated that, if the anisotropy coefficient D in the 
free energy (2) is negative, more complex temperature- and magnetic-field-induced 
wavevector and spin reorientation phenomena occur than in the previously analysed 
case of D > 0, which was appropriate for a description of MnSi. (The structure of the 
original form of this term (see (2.2) of [7]) is similar to that of the magnetic dipole- 
dipole interaction [ 111.) The results presented here provide a qualitative description of 
recent neutron diffraction data on cubic FeGe [lo]. The large hysteresis and sluggish 
character observed at the zero-field transition TZ, from the high-Tphase with Q 1 1  (100) 
to the low-Tphase where Q 1 1  ( l l l ) ,  is attributed to metastability and domain effects (not 
accounted for here) associated with the predicted first-order nature of this transition. 
The field-induced wavevector and spin reorientation observed with H ( 1  (110) at 140 K 
and at 250 K are predicted to be associated with second- and first-order phase transitions, 
respectively. Although numerical estimates of the model parameters based on earlier 
magnetisation data [13] are very crude, the resulting critical field values at these two 
temperatures (see figure 3), H,, = 0.34 kOe and f i s ,  = 0.08 kOe, respectively, agree 
reasonably well with those extracted from the recent data [lo]. The predicted magnetic 
phase diagrams of figures 1-3 should serve as useful guides for further experimental 
investigation of this novel magnetic reordering in the helical spin-density wave phase of 
cubic FeGe. 
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